
20 CROSSTALK The Journal of Defense Software Engineering January 2009

In any project or organization, some per-
son, group, or station inevitably acts as

a bottleneck to the organization’s output.
This is, of course, trivially true: Once the
output of that station improves so it is not
the bottleneck, some other station be-
comes the limiting factor.

For just that reason, I will not discuss
in this article options about improving the
performance at individual stations. I will,
rather, discuss ways to improve total sys-
tem results once you have tried all you can
think of for the key stations. If you find a
way to improve the performance at the
bottleneck station, then you get to start all
over, working out where the new bottle-
neck is and how to improve total system
performance in the presence of that bot-
tleneck.

Assuming, then, that you have done all
you can to improve the output ability at
the bottleneck station, it is sometimes pos-
sible to further improve output by putting
attention on the non-bottleneck stations.

The odd part about these strategies is
that when we use the spare capacity at the
non-bottleneck stations, we will some-
times deliberately allow “rework” in order
to gain an advantage at the bottleneck sta-
tion. This is counterintuitive to most peo-
ple: Most of our industry is founded on
the notion that we should avoid rework
like the plague.

I will refer to this as “spending” effi-
ciency locally for a global gain.

Once you start looking for this, you
will see people in ordinary life doing
exactly that: Those who have a bit of
spare time find ways to help the bottle-
neck group and streamline the overall
flow. The way in which efficiency is best
spent differs according to the situation.
Taking a look at those alternatives is what
this article is about.

A Sketch of the Argument
If you optimize each independent opera-
tion in a chain of activities, you are quite
likely to not get the best total output from
the entire chain. This has been studied and
documented for years. It is, among other
things, the basis for Eliyahu M. Goldratt’s
Theory of Constraints [1, 2].

The usual advice is to find the bottle-
neck station, make it work better until it is
no longer the bottleneck, and then pay
attention to the new bottleneck station.

While that advice is, of course, correct,
it is lacking in two regards:
• For any organization, there is eventual-

ly a point when the workers and man-
agers are working at their limit. They
may not be able to hire any more peo-
ple at the bottleneck station or find
any other way to improve that group’s
productivity. This point will be reached
in all cases, whether temporarily or due
to fundamental limits.

• There might be other things other
people can do to improve the output
of the system as a whole.
Here is a simple example taken from

ordinary life: John was folding brochures
for a part-time job. Sean was doing some
other work nearby and wanted to find a
way to help, but in this situation couldn’t
help fold brochures. Sean found that he
could help by leaning over from time to
time and tilting the stack of papers so John
could pull new ones off the top faster.

The point to observe here is that Sean
didn’t do John’s work for him, but still
found a way to speed up John’s work.

The basis for these sorts of strategies
is another truism: People at the non-bot-
tleneck stations have spare capacity. By
using that spare capacity in interesting

ways, we can sometimes improve the total
system output.

Basic Alternatives
When I first went looking for suggestions
as to what people should do with their
extra time when working at non-bottle-
neck stations, I found very little.

The first suggestion, given by Goldratt
in the context of the Theory of Con-
straints, is that the people “sit on their
hands” so they don’t silently turn into bot-
tlenecks without noticing it:

During a presentation of the five
steps of focusing, I can recall Eli
saying that at non-bottlenecks peo-
ple should sit on their hands until
there is work to be done. When
there is work to be done, then they
should work as fast as they can and
then return to sitting on their
hands. But this act of subordina-
tion is extremely difficult as it goes
against common practice of maxi-
mizing the utilization of every
resource, hence the new rules,
“Utilization and Activation are not
synonymous” and “The level of
utilization of a non-bottleneck is
not determined by its own poten-
tial but by some other constraint in
the system.” [3]

Goldratt also said:

... we have to face the fact that this
conclusion means that under no
circumstances should we release
materials just to supply work to
workers ... the worker is not run-
ning the machine. He is standing
idle. [4]

The Agile and Lean manufacturing
communities do one better [5, 6]. They
cross-train people at adjacent stations so
that if one of them becomes overloaded,
the neighbor can do some of his work until
the bottleneck moves. These two sugges-
tions—sit idle and do some of the work of
the bottleneck station—are good but not
always applicable, appropriate, or optimal.

“Spending” Efficiency to Go Faster
Dr. Alistair Cockburn
Humans and Technology

Have you ever been on a project where some person or group is holding up the works? They are called the “bottleneck” sta-
tion, and here are some usual and unusual strategies for improving output in the presence of various bottlenecks.

Software Engineering Technology

“Those who have a bit
of spare time find ways
to help the bottleneck
group and streamline

the overall flow.The way
in which efficiency is best
spent differs according to

the situation.”

“Spending” Efficiency to Go Faster

January 2009 www.stsc.hill.af.mil 21

I will develop two more strategies in the
following sections:
1. Simplify the work of the bottleneck sta-

tion (as with tilting the stack of papers).
2. Let non-bottleneck people rework their

ideas to reduce future rework or speed
decisions at the bottleneck station.
The second of these is the least obvi-

ous and therefore most interesting. I’ll illus-
trate both with case studies from software
development projects.

Simplify the Work of Others
The first strategy is based on the company
eBucks, a spin-off from a larger bank to
create online rewards systems.

The eBucks case has been described in
some detail in [7]. Here, I only present
details relevant to the current topic: what
to do at non-bottleneck stations. I’ll break
the story into three parts:
1. Organizational structure.
2. Development methodology.
3. Changed strategy.

Organizational Structure
eBucks had about 50 employees at the
time, with three programmers who knew
the domain and technology well and about
16 programmers fresh from college who
were new to both the technology and the
business. More such programmers were
being hired at the time.

There were four business experts and
two expert IT analysts who created and
documented new initiatives for the pro-
gramming team to develop.

Everyone sat within a few dozen steps
of each other, in accordance with Agile
principles [7]. The company released any
new system features they had to the Web
every two weeks. The requirements
evolved in parallel with development while
the programmers were programming.

The company was gaining market
dominance in part because they deployed
new functionality to the public faster than
their competitors could match.

Development Methodology
The four market specialists, in dialogue
with their external contacts and with the
help of the two experienced IT analysts,
would draft function requests (initiatives)
for the development group to implement.

At the time, there were about 70 initia-
tives in the queue. Given the proximity of
seating and the fact that they were deploy-
ing to the Web every other week, the most
obvious strategy to consider would be to
increase verbal communication between
the analysts and the programmers, as is
recommended in the standard Agile litera-
ture [7].

Closer investigation indicated that
this would be a mistake. The problem
was that the programmers were over-
loaded with requests. With four times as
many initiatives as programmers, each
programmer was working on between
four and six initiatives at one time. The
programmers were mostly inexperienced,
fresh from school, and did not yet under-
stand the problem domain very well.
Because of their newness and because of
the wide range of assignments in play at
any one time, the programmers could not
keep the details of their assignments in
their heads.

Changed Strategy
The first change, of course, was to reduce
the number of initiatives in play, so that
each programmer was working on one (or
at most two) initiatives in any one week.
This was still not enough, given their new-
ness to the domain and the enormous
backlog of initiatives they were facing.

In the context of this article, the pro-
grammers were quite severely the bottle-
neck station; adding more programmers
wouldn’t help, nor could the existing ones
program faster. The only place found to
improve the output of the programmers
was to ensure that they were not doing
accidental rework due to forgetting what the
domain rules were, or spending time
doing domain research when other people
were available to do that. The goal was to
keep the programmers programming use-
fully.

Consequently, we went against the
standard advice of the Agile literature and,
rather than using verbal communication to
pass along the evolving requirements, we
agreed that the market specialists and

business analysts would write down for
the programmers fairly detailed use cases,
business rules, and data descriptions.

The analysts then walked the program-
mers through the text they had written
and left the text for the programmers to
refer to as they worked.

The result was that the programmers
could work in an uninterrupted, heads down
mode for most of the day, instead of stop-
ping to ask questions or do research.

Lest this seem like the natural, default,
or standard solution, it should be reiterat-
ed that the reference Agile material on
Crystal [7], Extreme Programming [8],
and Scrum [9] all recommend reducing
written material and increasing verbal
material.

In the next project, we did indeed
reduce the written material given to the
programmers; in that project, however,
the programmers were not the bottleneck.

Rework Strategically
The second strategy is based on a medi-
um-sized IT project I call Winifred. The
project was a success in the following
sense: The team delivered the contracted
functionality on time, in three-month
increments; the system solved the prob-
lem that management was concerned
about; the users utilized it as it rolled out
each quarter; and the system is still in
active use and maintenance 10 years later.
Project Winifred has been described in
some detail in [10]. Here, I only present
details relevant to the current topic: what
to do at non-bottleneck stations. I’ll break
the story into the same three parts as for
eBucks.

Organizational Structure
The project was fixed-scope (240 use
cases), fixed-price ($15 million), and fixed
time (18 months), using several technolo-
gies: COBOL, Smalltalk, and relational
databases for the production data. It was
staffed with 24 programmers in a total
team of 45 people (at its peak). It was
delivered incrementally to the user base
every three months.

The project used technologies in an
architecture common in the 1990s: A
Smalltalk client on a PC was connected to
a server running a relational database that
was connected to the company’s main-
frame system which ran programs written
in COBOL. All three technologies—
COBOL on the mainframe, relational
database on the server, and object-orient-
ed code in Smalltalk on the client’s PC—
were within the project.

The contractors sat on the same floor
and worked closely with the contracting

“The problem was
that the programmers
were overloaded with

requests.With four times
as many initiatives as
programmers, each
programmer was

working on between
four and six initiatives

at one time.”

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering January 2009

company’s employees. Programmers sat in
two or three team rooms; the business
analysts had offices several dozen steps
away.

The agreement between companies
allowed the users to change their minds
about what they wanted within each three-
month development period. The limit put
on this was that within the first six or
seven weeks of the 13-week period, the
users could change any requirement in any
way and could refine their requirements
up to week eight or nine. Because testing
and deployment preparation work took
four to five weeks, there was very little
time between when the last requirements
changed and when the system was given
to the production team.

Two or three Smalltalk programmers
were attached to each business analyst in a
function team.

The difficulty was that there were only
two database analysts (DBAs) for all four
function teams. The DBAs quickly
became the bottleneck station because
they couldn’t revise the database fast
enough to match the requirements and
design changes.

Development Methodology
A detailed description of the methodolo-

gy can be found in [10]. What is impor-
tant here are the linkages between the
business analysts (BAs) and the program-
mers, and between the programmers and
the DBAs.

The BAs met with user representa-
tives each week to discuss the current
release’s requirements and to show the
progress being made. The BAs docu-
mented their meetings with the users only
for tracking purposes; they conveyed
detailed information to the programmers
verbally as needed, daily and after each
meeting. Because of the high quality of
verbal communication, the BAs were
saved from having to revise detailed
requirements documents with the fre-
quently changing information.

The programmers attached to each BA
changed the domain model as needed
from week to week, to keep up with the
requirements changes, and also to
improve the design.

It soon became clear that the DBAs
could not keep up with those changes.

Changed Strategy
The strategies we considered might be
enumerated as follows:
1. Wait until requirements settle.
2. Get rid of some programmers.

3. Hire more DBAs.
4. Make the DBAs keep up with the pro-

grammers’ changes.
5. Have the programmers stop making

changes to their design.
6. Let the programmers create trial

designs.
The first was not allowed under the

terms of the agreement; the second would
not speed the project; the third, for rea-
sons of domain knowledge and corporate
information security, was not allowed; the
fourth was not possible in practice; and
the fifth would produce an inferior design.
That left the least obvious sixth choice.

Since there were many more program-
mers than DBAs (and possibly because
Smalltalk is so malleable an environment),
the programmers had the capacity to
experiment and improve the characteris-
tics of the domain design without impact-
ing the database design schedule. Allowing
them to do this could end up speeding the
database design work for the simple rea-
son that there would be less design rework
later.

Consequently, the programmers did
not give the domain model over for data-
base implementation until they had tried
several iterations of their design, could
assert that it was “relatively stable,” and
had passed it through a design review with
domain experts and the two DBAs.

In terms of what to do with excess
capacity at a non-bottleneck station, there
is a strategy different from sitting idle,
doing the work of the bottleneck, or sim-
plifying the work at the bottleneck; it is to
use the excess capacity to rework the ideas
to get them more stable so that less rework
is needed later at the bottleneck station.

Normally, rework is considered “waste”
and minimized, but here we see it used in a
strategic manner.

Analysis
Four strategies have been named so far for
what people might do at a non-bottleneck
station:
1. Sit idle.
2. Do the work of the bottleneck station.
3. Simplify the work at the bottleneck

station.
4. Rework material to reduce future re-

work required at the bottleneck station.
In each of these, the efficiency of the

non-bottleneck station is lowered, or
“spent.” This is what I meant in the title,
about “spending” efficiency to go faster.

The ways in which the efficiency
should be spent is an interesting and
meaningful topic for any team, and should
be considered deliberately and strategical-
ly for the situation at hand.

S
ta
bi
lit
y

Time

Requirements

Program
Design

Database
Design

Figure 1: Project Winifred’s Stations Triggered Differently Based on the Stability of the Upstream
Material

“Spending” Efficiency to Go Faster

January 2009 www.stsc.hill.af.mil 23

Rework as a Deliberate Strategy
The rework strategy is the least obvious
strategy and deserves some more analy-
sis. To understand its use in Project
Winifred, consider the growing stability
of the material at the three stations. At
the start of each cycle, the requirements
were unstable. They became more stable
over the first eight weeks of each three-
month cycle as they also became more
complete.

The domain model was also unstable
at the start of each cycle. It became also
more stable and complete over time, but
only had to reach the top level during the
testing period (that is, around week 12 of
the cycle). The database design had to
reach the point of being stable and com-
plete at the same time as the program.
Figure 1 (adapted from [7]) shows how
stability grew over time for requirements,
program design, and database design.

Recognizing that the programmers
had time to rework their designs and that
the DBAs really only had one good shot at
their design, it was arranged for the pro-
grammers to start their work from rela-
tively less complete and stable input, while
the DBAs would start their work from rel-
atively more stable input.

The moment of transfer is shown in
Figure 1 with the vertical arrow from the
upstream station’s material down to the
downstream station’s material. It was
important that the people on the respec-
tive teams traded information continuous-
ly once the transfer had occurred, since
the upstream material was changing while
the downstream people were working
from it.

The strategy of allowing rework is sen-
sitive to the placement of the points of
transfer shown in the figure. The fact that
the DBAs needed stable information is
reflected in the high position of the trans-
fer point: They didn’t have time to do
rework and therefore they needed stable
information. The fact that the program-
mers did have time to do rework is reflect-
ed in the low position of the transfer
point and the longer time allocated for
program design: They started sooner and
reworked more.

If the programmers hadn’t had time to
revise their domain model, this would have
been a poor strategy—the exact point I am
trying to make with this analysis.

Downstream vs. Upstream Rework
In Project Winifred, it was the upstream
station that had the extra capacity. The
strategy we used was for those people to
rework their design to improve its quality
and to stabilize it before handing it on to

the constrained downstream station.
Suppose, however, that it is the down-

stream station that has the extra capacity.
This might happen, for example, when the
marketing team is the bottleneck and can’t
decide which of several alternatives is
preferable. Here, the downstream team
might use their extra capacity to create
several designs for the upstream people to
choose from. The unused design would
simply get discarded, another example of
useful waste.

It is an interesting exercise to imagine
the bottleneck station being at different
places in the work stream, and working
out what a useful rework strategy might be
for the non-bottleneck stations.

Summary
Two software development cases and how
they made different use of the extra
capacity of their non-bottleneck resources
were discussed (people whose work was
not the speed-limiting factor in the overall
output of the organization).

In the first case, eBucks, the non-bot-
tleneck people did extra work to simplify
the work of the people at the bottleneck
stations.

In the second case, Project Winifred,
the non-bottleneck people performed
strategic rework in order to reduce the
later rework of the bottleneck group.

In a thought experiment, we saw how
a downstream team might create multiple
designs for an upstream group to choose
from.

When these strategies are added to the
more commonly known ones—of having
the non-bottleneck people sit idle or do
the work of the bottleneck people—there
are five strategies to choose from for how
to make use of the “excess efficiency”
available at non-bottleneck stations:
1. Have them sit idle.
2. Have them do the work of the bottle-

neck station.
3. Have them simplify the work at the

bottleneck station.
4. Have them rework material to reduce

future rework required at the bottle-
neck station.

5. Have them create multiple alternatives
for the bottleneck station to choose
from.
For each of these, the efficiency of the

non-bottleneck station is strategically low-
ered; that is, the efficiency is “deliberately
spent” in a particular way to gain an over-
all advantage in system output. The ways
in which efficiency should be spent differs
according to situation.

The examples in this article were all

taken from software development. It
should be clear that these ideas apply to
organizations and projects in general.u

References
1. Goldratt, Eliyahu M., and Jeff Cox.

The Goal: A Process of Ongoing Im-
provement. Great Barrington, MA:
North River Press, 2004.

2. Goldratt, Eliyahu M. Theory of Con-
straints. Great Barrington, MA: North
River Press, 1999.

3. Bowles, Jim. From a posting on the
theory-of-constraints experts mailing
list. No URL available.

4. Goldratt, Eliyahu M., and Robert Fox.
The Race. Great Barrington, MA:
North River Press, 1986.

5. Reinertsen, Donald. Managing the
Design Factory. The Free Press, 1997.

6. Personal discussion with Donald
Reinertsen, Jan. 2005.

7. Cockburn, Alistair. Agile Software De-
velopment: The Cooperative Game.
2nd ed. Addison-Wesley, 2006.

8. Beck, Kent. Extreme Programming
Explained: Embrace Change. 2nd ed.
Addison-Wesley, 2005.

9. Schwaber, Ken, and Mike Beedle.
Agile Software Development With
Scrum. Upper Saddle River, NJ:
Prentice-Hall, 2002.

10. Cockburn, Alistair. Surviving Object-
Oriented Projects. Addison-Wesley
Professional, 1998.

About the Author

Alistair Cockburn, Ph.D.,
is an expert on object-
oriented (OO) design,
software development
methodologies, use cases,
and project management.

He is the author of “Agile Software
Development,” “Writing Effective Use
Cases,” and “Surviving OO Projects,”
and was one of the authors of the “Agile
Development Manifesto.” He defined an
early Agile methodology for the IBM
Consulting Group, served as special
advisor to the Central Bank of Norway,
and has worked for companies in several
countries. More can be found online at
<http://alistair.cockburn.us>.

1814 East Fort Douglas CIR
Salt Lake City, UT 84103
Phone: (801) 582-3162
E-mail: acockburn@aol.com

